
Multi Agent Navigation on the GPU

Avi Bleiweiss

NVIDIA Corporation

ableiweiss@nvidia.com

Abstract

We present a unique and elegant graphics hardware realization of

multi agent simulation. Specifically, we adapted Velocity

Obstacles that suits well parallel computation on single

instruction, multiple thread, SIMT, type architecture. We explore

hash based nearest neighbors search to considerably optimize the

algorithm when mapped on to the GPU. Moreover, to alleviate

inefficiencies of agent level concurrency, primarily exposed in

small agent count (≤32) scenarios, we exploit nested data parallel

in unrolling the inner velocity iteration, demonstrating an

appreciable performance increase. Simulation of ten thousand

agents created with our system runs on current hardware at a real

time rate of eighteen frames per second. Our software

implementation builds on NVIDIA’s CUDA.

CR Categories: I.3.1 [Computer Graphics]: Hardware

Architecture—Graphics processors; I.2.8 [Artificial Intelligence]:

Problem Solving, Control Methods, and Search— Graph and Tree

Search Strategies; I.2.11 [Artificial Intelligence]: Distributed

Artificial Intelligence—Intelligent Agents

Keywords: graphics hardware, agent, search, navigation,

velocity obstacles, multi threading, binary tree, hash,

multiprocessor, kernel

1 Introduction

Multi agent systems have been recently gaining increased

attention by game AI developers, mainly in the area of motion

planning for non player characters. Simply stated, the principal

challenging problem here is the safe navigation of an agent to its

goal location, avoiding collision with both other moving agents

and with static or potentially dynamic obstacles. Then, to

subscribe efficiently on the GPU, a plausible planner solution

must exercise decomposable movement [Li and Gupta 2007], and

more importantly, scale well to environments with hundreds and

thousands of individual agents. Of course, it must perform at

interactive rates for excessively dense settings.

Velocity Obstacles (VO) [Fiorini and Shiller 1998] is a generally

applicable, well defined and simple technique that has been

widely used for safely navigating agents among moving obstacles

[Shiller et al. 2001; Kluge and Prassler 2007; Fulgenzi et al.

2007]. VO represents a set of agent velocities that would result in

a collision with an obstacle that moves at a certain velocity, at

some future time. Whereas the complement set of avoidance

velocities is intersected with a set of admissible velocities to

produce dynamically, feasible maneuvers for the agent. A new

VO space is computed in regular, discrete time intervals and the

path from a start to a goal position is derived by searching

potential velocities to either minimize distance or travel duration.

VO solves well the pattern of passively moving obstacles that

progress with little or no awareness of their surroundings.

In a multi agent formation agents must however be aware of each

other and constantly yield by adapting their trajectory to avoid

collision. Agent awareness of others is confined to the knowledge

of their current state represented by position and velocity. An

agent becomes cognizant of other agents (or obstacles for that

matter) when they fall inside its field of view. VO was identified

marginal when deployed in multi agent setups and prone to

produce undesirable oscillatory motion [Feurtey 2000]. Devised

VO extensions [Abe and Yoshiki 2001; Kluge and Prassler 2007]

provided less than an optimal solution to address VO instability

until the introduction of Reciprocal Velocity Obstacles (RVO)

[Van Den Berg et al. 2008-ICRA]. RVO embraces the reactive

behavior of other agents [Krishna and Hexmoor 2004] assuming

all agents make similar collision free reasoning.

Main Contributions. This paper presents the work and the

challenges we overcame in porting the RVO technology [Van Den

Berg et al. 2008-I3D] on to the GPU. Our model extends RVO to

remarkably improve simulation scalability by replacing a naïve

nearest neighbors search with a hash based, and by refitting the

algorithm to expose deeper parallelism. We demonstrate credible

speedup compared to a sixteen threaded, CPU implementation, for

crowds of up to several tens of thousands agents. Finally, we

provide comprehensive analytical profile for GPU resource usage,

memory access patterns and system level performance.

2 Related Work

The continuum crowds [Treuille et al. 2006] model unifies global

path planning and local collision avoidance by using a set of

dynamic potential and velocity fields that guide individual motion

simultaneously. Fickett and Zarko [2007] compute the 2D

potential field on the GPU using a tile based approach. The

potential field is constructed using an eikonal solver [Jeong and

Whitaker 2007] that runs on graphics hardware seven times faster

compared to the accomplished marching algorithm, referenced in

the original work. They further devise exploiting temporal

coherence to drive computation down by only updating tiles of

interest. Nonetheless, the footprint of the potential field,

especially with proposed extensions to address higher space

dimensionality, introduces a relatively large, sparse data structure

in video memory and exhibits suboptimal locality of reference for

fairly random spatial queries.

Human motion capture data offers an alternative for effectively

creating new animations [Treuille et al. 2007]. Essentially,

interpolating and concatenating dynamic clips into a realistic

script. In his thesis, Karthikeyan [2008] offers an animation

framework that uses the GPU to render crowds of virtual humans,

in real time. The technique utilizes motion graphs [Kovar et al.

2002] for splicing an existing database of short animation

sequences, and produces a continuous and a much longer clip for

rendering. This implementation uses CUDA [Nvidia 2007] and

runs the GPU as a general compute device. It demonstrates a

significant animation speedup compared to an equivalent CPU

implementation. However, this approach is less scalable and

suffers from an increased space complexity of the motion graphs

that must be stored in video memory for its entirety.

Our work was directly inspired and builds on top of RVO. RVO

produces smooth, visually compelling motion in setups formed by

crowds with hundreds and thousands of agents. But foremost,

each agent navigates individually without explicit communication

amongst agents, and all pursue identical, free collision reasoning.

RVO is thereby an embarrassingly parallel workload proving

performance scale on the CPU, nearly linear with the number of

agents. Extremely attractive is its intuitive formulation of

integrating global path planning and local navigation, leading to a

compact and economic memory model. At the same time, RVO is

notably computationally intensive, but this is well aligned with a

teraflop power, capable GPU.

3 Multi Agent Navigation

The overarching force driving navigation planning is that agents

have a destination or a goal. We consider goal selection an

external parameter set by the game developer. Barring

environmental conditions, we assume agents move to their goal in

the fastest speed possible. Most importantly, the presence of other

moving agents affect speed and in the extreme case a pair of

agents cannot intersect each other. In general, agents choose the

minimal distance path to their destination, but even when they

move unobstructed they abide by a preferred global path they

constantly consult. Presently, we compute the global path on the

CPU in a onetime, preprocessing step. This involves the reduced

visibility graph [LaValle 2006] method to obtain a shortest path

roadmap that prohibits agents from contacting static obstacles.

Then, our navigation model, composed of agents, obstacles and a

roadmap, is discretized in time and simulation advances all agents

per timestep, concurrently. Noteworthy in our framework is a

dynamic obstacle entity that is treated as a specially tagged agent,

passively moving in a constant, unaltered velocity.

3.1 Visibility

We can only offer here a short summary of roadmap related tasks,

namely visibility and shortest path. We define a visible point with

respect to a vantage point, an observer, if the line that connects

the points does not intersect any of the static obstacles present in

the scene. To simplify computation and without loss of generality,

input polygonal obstacles are each further reduced to a set of

boundary line segments. Then, the visibility processing step

generates two sets of edges, E0 that connects pairs of visible

roadmap nodes and E1 linking the goal position of each agent to

unblocked roadmap nodes. For resolving roadmap connectivity

we favored an efficient implementation of the sweep plane

algorithm [Shamos and Hoey 1976]. This amounts to finding the

set of intersections of a moving vertical line, originating in either

a roadmap node or in an agent goal, with line segment obstacles.

Let � be the number of obstacle segments, the running time

complexity of the algorithm is �(�log�) and space limit is of

�(�). We conclude the simulation setup step by invoking the

Dijkstra [Russel and Norvig 1995] search algorithm to determine

the shortest path from an agent goal position to any of the

roadmap nodes. Both the visibility and shortest path computations

described ideally suit a SIMT engine. In fact, recent work for

running roadmap search algorithms on the GPU [Bleiweiss 2008]

confirms noticeable performance gains and we expect appreciable

scale in porting visibility processing on to the hardware. The

fairly large visibility data structures produced here require though

a specialized video memory layout for compelling multi thread

access, further discussed in section 4.

3.2 Mathematical Model

We will now briefly address the mathematical model for collision

avoidance dynamics. The VO governing equation follows:

��	

(�) =
 �
 | �(�
, �
 − �) ∩ � ⨁ − � ≠ ∅ }.

Let A be an agent with reference point �
 and B a disc shaped

obstacle centered in �	. Let ⨁ denote a Minkowski sum and � a
ray defined by an origin and a direction. ��	

(�) (Figure 1(a)) is

the VO of obstacle B to agent A defining a set of velocities �
 for

A that result in collision with obstacle B moving in velocity �	, at

some later point in time. The Minkowski difference of a line

segment shaped obstacle B
 ��, �� }, used in our model, and a

disc A is an extended parallelogram shown in Figure 1(b).

 (a) (b)

Figure 1: Velocity Obstacle ��	

(�) of disc shaped, obstacle B

to disc shaped, agent A (a); Minkowski difference of line shaped,

obstacle B
 ��, �� }, and disc shaped, agent A (b).

RVO extends VO to overcome potential oscillatory movement

[Van Den Berg et al. 2008-ICRA]. Rather than choosing for each

agent a velocity that is outside the other agent’s VO, the new

velocity per timestep is an average of the agent current velocity

and a velocity that lies outside the VO of the other agent. The

formalization of RVO is outlined in the following equation:

���	

��	, �
� =
 �′
 ! 2 �#

 − �
 ∈ ��	

(�) }.

���	

��	, �
� is the RVO of agent B to agent A and is defined as

a set consisting of all velocities �
 for agent A that will result in a

collision with agent B at future point in time, assuming that agent

B chooses a velocity �	 in its own specified RVO. RVO

geometrical interpretation is the translation of the collision cone

��	

(�) to the apex

�&' �(

)
 , as illustrated in Figure 2. RVO is

further generalized and adds an inter agent, collision reasoning

load factor *	

, in the range of 0 to 1, that expresses the agent rule

of reciprocity: *	

 = 1 − *

	. The form of geometrical translation

now places the VO cone apex in (1 − *	

)�
 − *	

�	. Lastly, in

a multi agent setup the combined RVO for agent �, is the union of

�

.

�	

�

�

�

 � ⨁ − �

�
 − �	

��	

(�) �	

.

 � ⨁ − �

��	

.

��	

.

�

(�)

(−�)

-

Figure 2: Reciprocal Velocity Obstacle ���	

(�	, �
) of agent B

to agent A, translating the collision cone ��	

(�) to the apex

�&' �(

)
.

all RVOs created by other agents and the VOs generated by all the

obstacles in the scene:

���, = ⋃,,/ ���/
,��/ , �, , */

,� ∪ ⋃1 ∈ 2 ��1
, (�1).

The problem of multi agent simulation can be now formulated and

reduced to searching an optimal agent velocity in a set of

permissible velocities outside the claimed union of RVOs, for

each time interval.

3.3 Simulation

In this section we formalize the steps for simulating our model. A

simulation session runs until all agents reach their goal or until a

maximum limit of running time exceeds a preset system cap. Our

simulator advances through each timestep performing parallel

computation on all agents in a three stage pipeline, hash (optional,

discussed later), simulate and update, as depicted in Figure 3:

Figure 3: Pseudo code for simulator advancement through each

timestep with hash (optional), simulate and update phases.

In the first step of the simulate phase we compute a preferred

velocity vector. Its magnitude is bound to a preferred speed value

set externally, and its direction faces from the current agent

position to either a roadmap node or to the agent goal. The closest

roadmap node is any of the visible nodes from another roadmap

node or from the agent goal, or a node of the shortest path tree,

computed as part of the visibility preprocess described in a

previous section. Ideally, we would want the new velocity

selected for the agent to be as close to the preferred velocity.

In the next step we compute the agent proximity scope. We assert

that simulating the model described in the previous section for

every possible pair of agents and any combination of agent and

obstacle is unnecessary and would require excessive amount of

computation. The basis for our claim is that an agent has less

knowledge of a far away agent intention and it is thus less likely

for them to affect the motion of each other. We thereby adaptively

compute a limited scope of neighboring agents and obstacles,

confined to a certain distance from the agent of concern. The

agent proximity scope is further bound by a programmer set

maximum number of the closest, and most likely visible

neighbors.

We then select the best new velocity for the agent from the set of

velocities outside the combined RVO. In our model agents are

subject to dynamic constraints that include maximum speed

3,
456 and maximum acceleration 7,

456. The new velocity search

is additionally qualified then to be in the following admissible set:

��,(�,) =
 �#
, | ||�#

,|| < 3,
456 ⋀ ||�#

, − �,|| < 7,
456∆; },

where ∆; is the timestep. We arrive at the best new velocity by

evaluating number of random samples evenly distributed over the

set of allowable velocities. Where the number of velocity samples

is a global simulation parameter set externally. The quality of a

candidate velocity is affected by its deviation from the preferred

velocity and by the inverse of the time-to-collision with the agent

neighbor. This is further expressed in the following cost function:

<=>;,(�#
,) = ||�,

?@AB − �′,|| + D
, E
F,4AGFHGIHJJ,K,HL(�M)

 ,

where �,
?@AB

is the preferred velocity and D, is a weighting factor

that controls the agent aggression. Note the time-to-collision for

no foreseen collision is infinity. For each candidate velocity we

look for the minimum time-to-collision in the combined RVO,

generated for the agent neighboring scope, and select the new

velocity to be the candidate velocity with the minimal cost:

�,
LAN = OP� <=>;,(�′,) DℎR-R �′, ∈ ��, .

The algorithm described addresses crowded scenes with their

combined RVO space likely filling up the entire set of admissible

velocities. While picking up velocities inside the union of RVOs

is an incidental liability, it was empirically proven to be resolved

in progressive updates. Also, in theory, the navigation model

ensures that no pair of agents will intersect. However, in practice

we enforce a pair-wise minimum distance that we flag once being

violated. Then, in selecting the new velocity we rather compute

the time-from-collision and make agents too close part away.

The update phase is computationally light weight and is invoked

synchronously once the new velocity has been resolved for all the

engaging agents. We first scale the velocity of the agent to obey

maximum acceleration and follow with an update to the agent

position. We then resolve the at-goal agent state by checking the

distance between the updated position and the goal to be within an

 1: VO = velocity obstacle

 2: RVO = reciprocal velocity obstacle

 3: do

 4: hash

 5: construct hash table

 6: simulate

 7: compute preferred velocity

 8: compute proximity scope

 9: foreach velocity sample do ← �R>;RT U7-7VVRV
10: foreach neighbor do

11: if OBSTACLE then VO

12: elseif AGENT then RVO

13: resolve new velocity

14: update

15: update position, velocity

16: resolve at-goal

17: while not all-at-goal ← WV7; U7-7VVRV

�

�
��	

(�)

�	

���	

(�	 , �
)

�

�
′

(−�
)

�
 + �	

2

(�

)

externally set, goal radius parameter. Finally, once all agents have

reached their goal, simulation terminates.

4 Implementation

Multi agent simulation on the GPU presents several

implementation challenges. Most importantly are (7) hiding

global memory latency [Buck et al. 2003], (X) mitigating thread

divergence, (<) minimizing hash table constructing cost and (T)

efficient thread safe, random number generation (RNG). Our

simulator operates on all agents simultaneously and is governed

by a pair of simulate and update CUDA kernels. Optionally, we

fork off nested, velocity sample iteration by launching a set of

independent thread grids, one per agent (Figure 3).

The communication paths of our CUDA simulator are straight

forward. In each simulation step the GPU provides back to the

CPU main simulator thread a list denoting at-goal status, per

agent. The list cumulative state thus makes up for our session

termination criteria. In addition, the GPU emits two arrays, one of

positions destined for visualizing the agent computed waypoints;

and one of velocities for interacting with the physics simulator of

a game engine. Further, deeper discussions of AI, physics

simulation integration is outside the scope of this paper. We now

look more closely at some GPU unique, simulator design

considerations to confront our challenges.

4.1 Data Layout

We have all our simulator data structures reside in global

memory. Static per timestep and any modifiable data structures

are kept in non cached, read-only or read-write global memory

locations. Although it would be intuitive to store visibility and

shortest path data as an array-of-structures (AoS) this has serious

memory access implications with severely reduced bandwidth due

to thread unaligned, data layout. Instead, we store roadmap related

data in a more efficient collection of structure-of-arrays (SoA). By

grouping thread related data in contiguous arrays we improve

substantially the possibility of coalesced memory transactions

across a half-warp.

We maintain two identical visibility data structures, one for

roadmap nodes and one for agent goals. Per node or goal vertex,

visibility data is split into a pair of vectors, one listing

unobstructed, angular vertex view of static obstacles in the form

of
 7�YVR, >RYOR�;_PT } and the other is a collection of

distances from the vertex to a roadmap node

 TP>;7�<R, �=TR_PT }. The elements of the vectors are of type

 WV=7;, P�; }, each taking 8 bytes in global memory. The vectors

are further aggregated into a collection of vectors as depicted in

Figure 4. Vectors inside a collection are of arbitrary length and

are indexed or iterated using a pair of linear offset and count

parameters. Then, in video memory the visibility hierarchy is

represented as a pair of collection of vectors and a top level array

listing
 =WW>R;, <=[�; } for specific vector dereferencing, for

each the roadmap nodes and the agent goals.

A third array enlists agent goal shortest path trees, each formatted

as a vector of distances from a roadmap node to an agent

goal
 TP>;7�<R, �=TR_PT }. The shortest path data structure

follows identical visibility data access pattern illustrated in Figure

4.

Read-only resources throughout the simulation session are stored

as a set of linear device memory regions bound to texture

references. They include global simulation controls (Figure 5) and

static obstacles, each represented as a line segment occupying a

pair of four component texels, one for each vertex. With the

benefit of being cached, texture potentially displays higher

bandwidth for localized access.

Figure 4: Visibility and shortest path data hierarchy. The index

array (a) is thread aligned and uses a pair of
 =WW>R;, <=[�; } to

locate a vector of a roadmap node or a goal vertex in the array of

vectors (b), vector elements are of type
 WV=7;, P�; } (c).

Figure 5: CUDA global simulation controls data structure, stored

in a single texel texture.

The CUDA agent data structure shown in Figure 6 is the focal

resource for communicating simulation results across kernels. It

groups float4 vector members and internal data structures, each

composed of 4 byte, scalar variables of no more than 16 bytes,

padded as necessary. This yields a top level, 16 byte aligned data

structure in memory that is highly effective for performing vector

member accesses. In our simulator model vector data types were

made extensible and more forward looking. They are each of

three or four, 32 bit float or integer components, for computation

and storage, respectively.

Figure 6: CUDA agent data structure aligned to 16 bytes in global

memory; internal data structures are padded to a 16 bytes entity,

their members are annotated in green (takes a total of 192 bytes).

Our agent proximity data structure is kept in a separate SoA of

 �RPYℎX=-_PT, �RPYℎX=-_;\UR } elements, with neighbor type

being either an agent or an obstacle. With no dynamic allocation

on the GPU we claim enough space to accommodate the

maximum neighbor count specified in the governing simulation

parameters, per agent. An agent resorts to its

R] RE …………….. RL

�] �E ……………… �L

;] ;E ……………. ;L

 WV=7;, P�; }

 =WW>R;, <=[�; }

(a)

(c)

(b)

struct CUSimulation {

 float timestep;

 struct proximity;
 O7^�RPYℎX=->, TP>;7�<R }
 float velocitysamples;

};

struct CUAgent {

 float4 start, goal;

 struct shape;
 -7TP[>, Y=7V-7TP[> }
 float4 position, velocity;

 float4 prefvelocity, potential, candidate;

 struct constraint;
 UR-W>URRT, O7^>URRT, O7^7<<RVR-7;P=�, >7WR;\ }
 struct cost;
 ;POR;=<=VVP>P=�, OP�UR�7V;\, -7�YR }

 struct proximity;
 =WW>R;, <=[�; }

 struct state;
 <=VVPTRT, 7;Y=7V, =-PR�;7;P=�, -7�T>RRT }
};

private
 =WW>R;, <=[�; }, array index state to dereference its own

proximity list.

With this data layout, making 8 and 16 bytes our dominant access

grain, we appear better positioned to mitigate bandwidth drop of

non coalesced transfers. Also, we are less concerned with onetime

pointer indirection cost attributed in fetching the index of a thread

aligned, array list member; this is well amortized across multiple

list element loads or stores.

4.2 Nearest Neighbors Search

One of the key simulator computation steps in arriving at the

agent proximity scope is performing _-nearest neighbors search.

We found the naïve approach, with each agent iterating over all

other agents and computing all possible distances, to pose a

quadratic effect on system level running time, resulting in a

considerable performance drop on the GPU. Running the

exhaustive type search in parallel [Garcia et al. 2008] has merit

for higher space dimensionality (>16) and was not an ideal option

for us. We therefore leaned towards a spatial hashing scheme that

is not necessarily perfect [Lefebvre and Hoppe 2006], but is

deterministic in evaluating an upper and lower bound of a query.

The hash table assumes as close as linear storage �(�)

complexity and performs �(log�) query time [Overmars 1992],

with � the number of agents in the environment. The hash table is

recomputed every timestep and therefore must be constructed

with a predictable algorithm that takes a relatively small fraction

of overall simulation frame time.

The hash function ℎ(U) maps a 3D position U(^, \, `) onto a 1D

index for dereferencing the array of agent data structures,

discussed earlier. Our mapping simply examines the signed

distance of the query position to a reference agent position:

det (UdeA@f, U@AB). Assuming non overlapping agents, an agent

position is guaranteed to be unique per frame; however, few hash

collisions are unavoidable due to perfect symmetry of agents to a

reference agent. Our hash table is built as a balanced, binary tree,

representing the static state of agents at the start of a simulation

step. And, with a logarithmic query traversal, the prospect for

coalesced memory loads is thereby raised. We reload the

computed hash table in global memory each frame, and store it as

an array of tree nodes, each aligned to a 16 byte boundary. A node

data structure is composed of a three dimensional, float data type

key, an integer scalar index value, and two nodal device pointers –

left and right.

The algorithm for querying the closest agent neighbors takes then

the following steps:

For each agent:

• Select random, 3D position samples in the agent radial

neighbor area, defined in the global simulation

parameters.

For each sample:

• Hash 3D position to get the closest agent index.

• Compute distance between the agent and its closest.

• Insert and sort distance into the agent proximity list.

The number of hash queries we perform per step, for each agent,

is externally controlled by the global, nearest neighbors count

quantity. Obviously, the neighbor sampling quality directly affects

the smoothness of the simulation. In a dense environment we

would want to pick a higher sample count to avoid missing close

neighbors and as a result agents grazing each other. In practice, a

few tens of samples are adequate. The performance benefit of the

hashing scheme on the GPU is nonetheless fairly conclusive, once

the agent count exceeds a threshold (>500), and further discussed

in section 5.

4.3 Execution Model

Launch Overhead. CUDA kernel launch overhead is of prime

concern to us. Specifically, we seek minimizing per frame cost

incurred by host-to-device and device-to-host copies. The

recursive nature of simulation mandates resources to be persistent

across kernel launches, both intra and inter frames. While most of

our working set is allocated and copied from host-to-device once

for the entire simulation session in an insignificant percentage of

total running time, the hash table remains a concern. Ultimately,

we wanted to run hash table construction on the GPU and avoid

unnecessary frame copy. However, launching a single threaded,

high latency dedicated kernel incurs an appreciable performance

drop and our present implementation resorts to building the table

on the CPU followed by a host-to-device frame copy. We address

quantitative results on the matter later.

Table 1: Kernel resources; shared, local and constant memory

usage in bytes, mostly compiler implicitly generated for kernel

launch arguments, synchronization barriers and register spilling.

Property Kernel

simulate update

Threads Per Block 128 128

Active Threads Per Multiprocessor 512 1024

Active Warps Per Multiprocessor 16 32

Occupancy 50% 100%

Table 2: CUDA static occupancy measure for the simulator

kernels, running on a 1.3 compute capable device.

Configuration. Hardware threads are laid out in a single, one

dimensional grid of one dimensional thread blocks. A thread is

assigned an agent in flat mode, and an agent velocity sample in

nested parallel. And, all GPU’s currently running threads must

complete before any of the kernels is allowed to launch.

Complexity. The simulate kernel performs the three stages of (7)

computing a preferred velocity, (X) nearest neighbors search and

(<) iterating the new velocity selection out of the combined RVO

and VO avoidance set. In theory, the running time complexity of

(7) is linear with neighboring roadmap nodes to any of a roadmap

node or an agent goal, or with the length of the shortest path from

the goal to a roadmap node. Given � the number of agents, _ the

proximity sample count and 3 the number of candidate velocities,

the algorithm of (X) runs in either �(�)) without hashing or

�(_log�) with hashing; and (<) performs in �(3_). With the

update program executing only a few tens of mostly unconditional

device instructions, evidently either (X) or (<) are the de facto

performance limiting code sections of our simulator, attracting

most of the optimization attention.

Hardware Resources. The GPU results we present in this paper

are from running our simulator on NVIDIA’s GeForce GTX280

Kernel Registers Shared Local Constant

simulate 32 116 244 208

update 14 60 0 56

[Nvidia 2008]. Table 1 illustrates hardware resource usage for our

kernels. Shared memory usage is primarily static and assigned for

launch argument passing and synchronization barriers. Notably

high is the simulate kernel register count, 32, imposing a 0.5

thread block efficiency, occupancy, cap as shown in Table 2.

Thread local memory area is indeed required for register spilling.

Latency. GTX280 is considered a CUDA 1.3 compute capable

device with a total of 16384 registers per multiprocessor. Ideally,

we would opt for the upper register bound in assigning warps to a

thread block. However, our experiments pointed to an appreciable

performance sweet spot in allocating four warps per block,

leading to the scheduling of up to four active thread blocks per

multiprocessor. With up to 16 active warps per multiprocessor we

are able to hide well the latency of a typical fused multiply-add

(FMA) instruction (10–12 cycles). Consequently, by effectively

processing independent math instructions we are properly

positioned to amortize several hundred cycles of global memory

access latency.

Coalescing. Providing to CUDA 16 bytes aligned SoA with a

small footprint array element, ensures at most two memory load

or store instructions per thread access, leading to a worst case

bandwidth of a quarter of the fully coalesced half-warp. In

addition, we were able to relegate fine grain coalescing to an

impressively improved compute capable device 1.2 or higher.

With transaction addresses binned into � contiguous segments in

memory there could be any number of memory transfers from one

to � (up to 16) for the half-warp. Whereas lower compute capable

devices are limited to issue either one or sixteen memory

transactions. Exceptionally, the new graceful coalescing protocol

effectively mitigates poor locality of reference across threads

often found in the highly irregular and nested simulate kernel.

4.4 Nested Parallel

With the GPU capable of running simultaneously many thousands

of threads in flight, straight forward agent based, flat data parallel

often times renders the hardware sub optimally. In fact, simulation

scenarios of up to a hundred of agents map on to a single

multiprocessor, leaving majority of the thirty available

multiprocessors on GTX280 idling. To our knowledge, no work

has considered so far velocity level, nested parallel to accomplish

improved performance scale for relatively small agent count.

Figure 6: CUDA nested kernel top level code.

Figure 7: Top level, nested candidate velocity, CUDA kernel;

performed at its tail, a fine reduce-min into shared memory

followed by a coarse global atomic compare-and-swap operation.

The formulation of nested parallel in our simulator forks off a

child grid for each agent with its thread count configured by the

externally set, number of samples to iterate for resolving the new

agent velocity. Nested thread grids run independently given

sufficient hardware resources, and they all execute the same

candidate velocity, CUDA kernel. Each child grid synchronizes

its own threads by performing at the tail of the kernel a fine

reduce-min operation into shared memory followed by an inter

thread block, global atomic compare-and-swap operation, shown

in Figure 7. Of course, in nested mode the original simulate kernel

resorts to a lesser compute load. Note that velocity grids inherit

resources from the single agent grid, and more importantly the

memory footprint remains invariable to flat or nested parallel

mode, apart from additional 512 bytes of shared memory.

Figure 8: Thread grid distribution in nested simulator pipeline.

The formation of the nested simulator pipeline (Figure 8)

introduces thread amplification mid pipe. And, with hundreds of

velocity samples to iterate, we can easily populate thousands of

threads in the GPU for even a handful of participating agents; thus

leveraging the hardware compute power much more effectively.

4.5 Thread Safe RNG

Our pseudo random number generator implements the rand()

function of the C runtime library. We realized the generator has to

be thread safe and considered to store a seed per multiprocessor in

shared memory. This implied a global memory save and a restore

per timestep, for persistency. But, updating the seed for every

rand() call required an atomic MAD operation into shared

memory that turned out to be adversely in appreciably affecting

performance. Subsequently, we ended up with a random seed

member in the CUDA agent data structure (Figure 6), resulting in

an independent random number generator per agent with a more

qualitative, well distributed and less predictable number sequence.

5 Results

We next report simulation-only results, all obtained in running on

Microsoft 32 bit, Vista and using CUDA 2.1.

5.1 Experiments

Our list of experiments (Table 3) straddles a range of agent count

from a handful up to tens of thousands. Simple is a simulation of

four agents moving towards a goal diagonally across each other,

and bypassing an obstacle in the middle. Second and third

respectively, simulate averting collision with a moving obstacle,

and robots maneuvering in an area filled with static polygonal

obstacles. Next, thirty two agents positioned on a circle move to

their diametrically opposite position while yielding the right of

way. Then, we simulated four groups of twenty five agents each,

forced to pass through a narrow corridor. The Stadium scenario

 1: __global__ void

 2: candidate(CUAgent* agents,

 3: int index,

 4: CUNeighbor* neighbors)

 5: {

 6: float3 v, float t;

 7: CUAgent a = agents[index];

 8:

 9: if(!getThreadId()) v = a.prefvelocity;

10: else v = velocitySample(a);

11: t = neighbor(a, agents, neighbors, v);

12:

13: float p = penalty(a, v, t);

14: reduceMinAtomicCAS(a, p);

15: if(p == a.minpenalty) a.candidate = v;

16: }

simulate

 7YR�;]

 7YR�;LGE

 7YR�;E update

candidate

� grids, each of

3 velocity threads

simulates two hundred and forty five agents entering the field

through four gates and then spreading towards forming a textual

pattern. Whereas the Crosswalk dataset experiments with four

groups of one hundred agents each that establish straight lanes to

avoid collisions as they cross each other on a walkway (Figure

14). Finally, we simulated an office floor evacuation with agents

escaping the building through two narrow exits (Figure 15). This

sequence highlights interesting congestion phenomena that occur

with groups travel at different speeds. Leaving the roadmap fixed,

the Evacuation setup has multiple representations with ascending

number of agents, from five hundreds to twenty thousands.

Indeed, for datasets without an explicit definition of a roadmap,

agents head on towards their goal from every location reached.

Table 4 illustrates governing settings that affect system level,

simulation runtime complexity.

Dataset Agents Segments Roadmap

Nodes

Flat

Thread

Blocks

Simple 4 4 4 1

Car 12 0 0 1

Robots 24 130 16 1

Circle 32 0 0 1

Narrow 100 16 0 1

Stadium 245 24 16 2

Crosswalk 400 8 0 4

Evacuation 500 212 429 4

1000 8

5000 40

10000 79

20000 157

Table 3: Simulation experiments with a quantitative breakdown of

simulation objects and flat thread block distribution.

Dataset Timestep Proximity Velocity

Samples

Frames

� T

Simple 0.25 10

15 250 607

Car 0.125 100 500 228

Robots 0.1 3 400 455

Circle 0.125 2 500 596

Narrow 0.125 2 500 780

Stadium 0.125 3 500 1116

Crosswalk 0.0625 10 1000 1200

Evacuation† 0.1 10 15 250 1200

 †applies to all Evacuation dataset derivatives

Table 4: Governing simulation parameters: timestep in seconds,

proximity neighbor count � and radial distance T, candidate

velocity samples, and number of actual frames per session.

Property GTX280 X7350†

Core Clock (MHz) 601 2930

Memory Clock (MHz) 1107 1066

Global Memory (MBytes) 1024 8192

Multiprocessor 30 4

Total Threads 4–20000 16

 †Intel’s X7350 used in the work by Van Den Berg et al. [2008-I3D]

Table 5: Processor configuration properties for GPU and CPU

reported in our results; multiprocessor notation is the equivalent

of cores for the CPU.

Table 5 provides configuration properties for the processor types

reported in our results (section 5.2). CPU running time on Intel’s

Xeon X7350 [Intel 2008], for the different evacuation scenarios,

are published in the work by Van Den Berg et al. [2008-I3D].

5.2 Statistics

In running the simulations described we were mainly interested in

collecting statistic data related to the model memory footprint,

parallelism efficiency as simulation progresses, and comparative

running time and speedup figures. Figure 9 shows GPU global

memory area of simulation resources. Data structures are broken

down by association to agents, goals, and the hash table. Roadmap

nodes and edges, and at-goal, position and velocity output arrays

are rather a small constant and excluded from the chart.

Figure 9: GPU global memory footprint (MBytes) of SoA and

AoS entities collectively assembled under agents, goals and hash

table subgroups.

The plot in Figure 10 depicts percentage of agents reaching their

goal position as a function of simulator advancement in time. A

steep agent completion curve towards the end of the simulation

implies a more consistent thread block load balance and is seen in

the Simple, Circle and Narrow experiments. However, agent

progress in the Stadium and the Evacuation plans is more graceful

in time and consequently expose thread task unevenness; a block

mixing mostly idling with compute intensive threads for at-goal

agents and ones still actively pursuing their goal, respectively.

Figure 10: Simulation progress plot for some of our experiments;

depicting fraction of agents reaching their goal as a function of

frame advancement.

Figure 11: Running time (milliseconds per frame) for simulations

with small number of agents (≤32). Comparing the GPU in flat vs.

nested parallel modes; thread count shown for nested simulation.

Figure 12: Running time (milliseconds per frame) for simulations

with over five hundred agents (Evacuation). Comparing the GPU

with and without nearest neighbors hashing.

Figure 13: Frame rate (frames per second) and speedup for

simulations with over five hundred agents. Comparing GPU with

nearest neighbors hashing vs. sixteen threaded CPU.

Figure 11 shows performance of flat vs. nested parallel modes for

experiments of small number of agents (≤32). Whereas for

simulations with over five hundred agents, Figure 12 summarizes

running time for NVIDIA’s GTX280 configured with and without

hash optimization. And, Figure 13 provides both simulation frame

rates and speedup factors of the GPU with nearest neighbors

hashing vs. a sixteen threaded RVOLib [RVOLib 2008]

invocation on Intel’s X7350 CPU. All running times reported on

the GPU include both onetime and per frame memcpy from host-

to-device and device-to-host, and hash table build time when

applicable.

6 Discussion

The statistic data presented in the previous section set forth

context to the discussion.

Memory Footprint. The compact working set of our simulator is

a striking difference compared to the more resource demanding,

continuum perspective frameworks, reviewed in section 2.

Furthermore, our video memory footprint is fully deterministic,

growing almost linearly with the number of agents. Consequently,

we allocate resource space once for the entire simulation session,

provided our claimed area fits available GPU global memory,

before we launch the simulator. Note that with a narrower global

memory stride we are less likely to hit a significant penalty of

almost doubling memory access latency (from 400 to 750 cycles)

for missing address translation table entries.

Nested Parallel. For small number of agents (≤32), flat level

concurrency on the GPU has a diminishing return against the

CPU. It is the inner, velocity level parallel that truly brings out

the GPU compute power to its fullest, with a realized average of

3.5X acceleration for nested vs. flat parallel modes (Figure 11).

Evidently, programming CUDA for nested parallel in our model

is remarkably intuitive, but appeared much harder on the CPU

given the language tools presently available.

Performance. The hash optimization of section 4.2 improved

our simulation performance on the GPU by a factor of up to 4X,

compared to the naïve, exhaustive approach (Figure 12). This

ultimately affecting the GTX280 to scale almost linearly with

increased agent count of up to several tens of thousands.

Moreover, we have achieved interactive rate of eighteen frames

per second in simulating the Evacuation setup with ten thousand

agents (Figure 13). In contrasting our system with a sixteen thread

invocation on a 3GHz, quad-core CPU, we have observed a GPU

speedup of up to 4.8X. Note that RVOLib would appear

benefitting little if at all in optimizing _-nearest neighbors search

[Van Den Berg et al. 2008-I3D].

Persistent Threading. The reality for memory resources to be

persistent has ruled out an extensive use of the GPU shared

memory in our design. Nonetheless, managing shared memory as

a global memory cache remains a credible optimization option to

further reduce overall latency. Specifically, caching frequently

accessed agent structure members per thread, could have aided us

the most. However, in sustaining four active thread blocks per

multiprocessor, for effectively hiding arithmetic operation

latency, we are being left with 4 KBytes of shared memory to

spare. And, with 128 threads per block, there remain 32 bytes

total for agent caching. Restrictive as it stands, we still look

forward to experiment with a software controlled cache, expecting

next generation hardware to continue relax shared memory space.

Limitations. One constraint in our present design is the single

threaded construction of the hash table. Invoking a dedicated GPU

kernel for this task would appear the cleaner solution. However,

running it single threaded, unable to properly hide global memory

latency, is highly incommensurate with observed overhead in the

order of a hash-less, frame time. Whereas, a cache friendly, hash

table build on the CPU, combined with the copy to global

memory, takes a much lesser toll of 28 percent of update time, for

scenarios with tens of thousands agents. Running effectively a

single thread, memory bound task on the GPU still remains an

implementation challenge.

Hash based nearest neighbors search might impact simulation

smoothness and cause agent grazing, once the proximity area is

under sampled. Unfortunately, there is no automatic way for

picking the ‘right’ samples. However, conscious oversampling,

when the hash function returns a recurred index, mitigates

perceived motion artifacts and yet sustains the tremendous

performance advantage of hashing.

Lastly, thread amplification in nested parallel can overrun rather

quickly both the maximum grid count and in flight threads (15360

on GTX280) the hardware is capable of. We approach this

constraint by adaptively selecting flat vs. nested modes based on

both the agent and the velocity sample counts.

7 Summary and Future Work

We have extended RVO to perform efficiently on current

generation of GPU architectures. Compared to the naïve nearest

neighbors search, we found spatial hashing on the GPU to be

extremely beneficial, yielding up to quadrupled performance, and

leading to almost linear scale of running time with increased

number of agents. We addressed severely idling GPU concerns

for small agent count by exploiting nested parallel, showing a

considerable 3.5X average gain vs. flat mode. On the other hand,

we found the GPU notably superior for higher agent count with

observed speedup of up to 4.8X compared to a sixteen thread

invocation on a powerful, quad-core CPU. Finally, with the

advantage of our compact memory footprint we believe the time

is appropriate for developers to evaluate, and possibly integrate,

GPU based multi agent navigation in game engines.

Areas considered for future work include:

• Develop a consistent simulation framework on the GPU for

AI and physics. Per frame interaction involves physics to own

the game character position and AI controls its velocity.

• Exploit GPU shared memory as a managed global memory

cache to make single threaded, hash table build run

effectively.

• Dynamically regroup agents per frame, specifically extracting

the ones that reached their goal, to improve thread block load

balance.

• Explore split frame simulations on multi GPU configurations;

advocate GPU level shared memory to avoid working set

replication and expensive inter-GPU copy.

• Improve hash based, nearest neighbors sampling quality by

defining finer angular samples and ensuring more consistent

area coverage.

Acknowledgements

We would like to thank the anonymous reviewers for their

constructive and helpful comments.

References

ABE, Y., and YOSHIKI, M. 2001. Collision Avoidance Method for

Multiple Autonomous Mobile Agents by Implicit Cooperation.

In Proceedeings IEEE International Conference on Robotics

and Automation, 1207–1212.

BLEIWEISS, A. 2008. GPU Accelerated Pathfinding. In Graphics

Hardware. In Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Conference on Graphics

Hardware, 66–73.

BUCK, I., and HANRAHAN, P. 2003. Data Parallel Computation on

Graphics Hardware. Tech. Report 2003-03, Stanford University

Computer Science Department.

FEURTEY, F. 2000. Simulating the Collision Avoidance Behavior

of Pedestrians. Master’s Thesis, University of Tokyo.

FICKETT, M. W., and ZARKO, L. T. 2007. GPU Continuum

Crowds. CIS Final Project Final report, University of

Pennsylvania.

FIORINI, P., and SHILLER, Z. 1998. Motion Planning in Dynamic

Environments using Velocity Obstacles. In International

Journal of Robotics Research, 760–772.

FULGENZI, C., SPALANZANI, A., and LAUGIER, C. 2007. Dynamic

Obstacle Avoidance in Uncertain Environment Combining

PVOs and Occupancy Grid. In Proceedings IEEE International

Conference on Robotics and Automation, 1610–1616.

GARCIA, V., DEBREUVE, E., and BARLAUD, M. 2008. Fast k

Nearest Neighbor Search using GPU. In Proceedings of

Computer Vision and Pattern Recognition Workshops, 1–6.

INTEL, 2007. Intel Core 2 Duo processor.

http://www.intel.com/design/core2duo/documentation.htm.

INTEL, 2008. Intel Xeon processor 7000 series.

http://www.intel.com/performance/server/xeon_mp/summary.ht

m.

JEONG, W., and WHITAKER, R. T. 2007. A Fast Eikonal Equation

Solver for Parallel Systems. In SIAM Conference on

Computational Science and Engineering.

KARTHIKEYAN, M. 2008. Real Time Crowd Visualization using

the GPU. Master’s Thesis, Virginia Polytechnic and State

University.

KLUGE, B., and PRASSLER, E. 2007. Reflective Navigation:

Individual Behaviors and Group Behaviors. In Proceedings

IEEE International Conference on Robotics and Automation,

4172–4177.

KOVAR, L., GLEICHER, M., and PIGHIN, F. H. 2002. Motion

Graphs. In ACM Transactions on Graphics, 473–482.

KRISHNA, K. M., and HEXMOOR, H. 2004. Reactive Collision

Avoidance of Multiple Moving Agents by Cooperation and

Conflict Propagation. In Proceedings of IEEE International

Conference on Robotics and Automation, 2141–2146.

LAVALLE, S. M. 2006. Planning Algorithms. Cambridge

University Press, http://msl.cs.uiuc.edu/planning/.

LEFEBVRE, S., and HOPPE, H. 2006. Perfect Spatial Hashing. In

ACM Transactions on Graphics, 579–588.

Li, Y., and Gupta, K. 2007. Motion Planning of Multiple Agents

in Virtual Environments on Parallel Architectures. In

Proceedings IEEE International Conference on Robotics and

Automation, 1009–1014.

NVIDIA, 2007. CUDA Programming Guide.

http://www.nvidia.com/object/cuda_home.html

NVIDIA, 2008. Geforce 200 series:

http://www.nvidia.com/object/geforce_gtx_280.html.

OVERMARS, M. H. 1992. Point Location in Fat Subdivisions.

Information Processing Letters, 261–265.

RUSSEL, S. J., and NORVIG, P. 1995. Artificial Intelligence: A

Modern Approach, Prentice Hall, 97–104.

RVOLIB, 2008. Reciprocal Velocity Obstacles

for Real Time Multi Agent Simulation.

http://www.cs.unc.edu/~geom/RVO/Library/index.html.

SHAMOS, M. I., and HOEY, D. 1976. Geometric Intersection

Problems. 17th IEEE Annual Symposium on Foundations of

Computer Science, 208-215.

SHILLER, Z., LARGE, F., and SEKHAVAT, S. 2001. Motion Planning

in Dynamic Environments: Obstacles Moving along Arbitrary

Trajectories. In Proceedings IEEE International Conference on

Robotics and Automation, 3716–3721.

TREUILLE, A., COOPER, S., and POPOVIC, Z. 2006. Continuum

Crowds. In ACM Transactions on Graphics, 1160–1168.

TREUILLE, A., LEE, Y., and POPOVIĆ, Z. 2007. Near-Optimal

Character Animation with Continuous Control.

ACM Transactions on Graphics, 26, 3.

VAN DEN BERG, J., LIN, M., and MANOCHA, D. 2008. Reciprocal

Velocity Obstacles for Real-Time Multi-Agent Navigation. In

Proceedings IEEE International Conference on Robotics and

Automation.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., and LIN

M. 2008. Interactive Navigation of Multiple Agents in Crowded

Environments. Symposium on Interactive 3D Graphics and

Games, 139–147.

Figure 14: Crosswalk simulation: four groups of one hundred agents each form straight lanes as they cross each other on a walkway.

Figure 15: Evacuation simulation: five hundred agents evacuating an office floor, escaping through two narrow exits; the scenario

highlights congestion phenomenon as agents leave the building.

