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Abstract 

We present a unique and elegant graphics hardware realization of 

multi agent simulation. Specifically, we adapted Velocity 

Obstacles that suits well parallel computation on single 

instruction, multiple thread, SIMT, type architecture. We explore 

hash based nearest neighbors search to considerably optimize the 

algorithm when mapped on to the GPU. Moreover, to alleviate 

inefficiencies of agent level concurrency, primarily exposed in 

small agent count (≤32) scenarios, we exploit nested data parallel 

in unrolling the inner velocity iteration, demonstrating an 

appreciable performance increase. Simulation of ten thousand 

agents created with our system runs on current hardware at a real 

time rate of eighteen frames per second. Our software 

implementation builds on NVIDIA’s CUDA.  
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1    Introduction 

Multi agent systems have been recently gaining increased 

attention by game AI developers, mainly in the area of motion 

planning for non player characters. Simply stated, the principal 

challenging problem here is the safe navigation of an agent to its 

goal location, avoiding collision with both other moving agents 

and with static or potentially dynamic obstacles. Then, to 

subscribe efficiently on the GPU, a plausible planner solution 

must exercise decomposable movement [Li and Gupta 2007], and 

more importantly, scale well to environments with hundreds and 

thousands of individual agents. Of course, it must perform at 

interactive rates for excessively dense settings. 

Velocity Obstacles (VO) [Fiorini and Shiller 1998] is a generally 

applicable, well defined and simple technique that has been 

widely used for safely navigating agents among moving obstacles 

[Shiller et al. 2001; Kluge and Prassler 2007; Fulgenzi et al. 

2007]. VO represents a set of agent velocities that would result in 

a collision with an obstacle that moves at a certain velocity, at 

some future time. Whereas the complement set of avoidance 

velocities is intersected with a set of admissible velocities to 

produce dynamically, feasible maneuvers for the agent. A new 

VO space is computed in regular, discrete time intervals and the 

path from a start to a goal position is derived by searching 

potential velocities to either minimize distance or travel duration. 

VO solves well the pattern of passively moving obstacles that 

progress with little or no awareness of their surroundings.  

In a multi agent formation agents must however be aware of each 

other and constantly yield by adapting their trajectory to avoid 

collision. Agent awareness of others is confined to the knowledge 

of their current state represented by position and velocity. An 

agent becomes cognizant of other agents (or obstacles for that 

matter) when they fall inside its field of view. VO was identified 

marginal when deployed in multi agent setups and prone to 

produce undesirable oscillatory motion [Feurtey 2000]. Devised 

VO extensions [Abe and Yoshiki 2001; Kluge and Prassler 2007] 

provided less than an optimal solution to address VO instability 

until the introduction of Reciprocal Velocity Obstacles (RVO) 

[Van Den Berg et al. 2008-ICRA].  RVO embraces the reactive 

behavior of other agents [Krishna and Hexmoor 2004] assuming 

all agents make similar collision free reasoning.  

Main Contributions.  This paper presents the work and the 

challenges we overcame in porting the RVO technology [Van Den 

Berg et al. 2008-I3D] on to the GPU. Our model extends RVO to 

remarkably improve simulation scalability by replacing a naïve 

nearest neighbors search with a hash based, and by refitting the 

algorithm to expose deeper parallelism. We demonstrate credible 

speedup compared to a sixteen threaded, CPU implementation, for 

crowds of up to several tens of thousands agents. Finally, we 

provide comprehensive analytical profile for GPU resource usage, 

memory access patterns and system level performance.  

2    Related Work 

The continuum crowds [Treuille et al. 2006] model unifies global 

path planning and local collision avoidance by using a set of 

dynamic potential and velocity fields that guide individual motion 

simultaneously. Fickett and Zarko [2007] compute the 2D 

potential field on the GPU using a tile based approach.  The 

potential field is constructed using an eikonal solver [Jeong and 

Whitaker 2007] that runs on graphics hardware seven times faster 

compared to the accomplished marching algorithm, referenced in 

the original work. They further devise exploiting temporal 

coherence to drive computation down by only updating tiles of 

interest. Nonetheless, the footprint of the potential field, 

especially with proposed extensions to address higher space 

dimensionality, introduces a relatively large, sparse data structure 

in video memory and exhibits suboptimal locality of reference for 

fairly random spatial queries. 

Human motion capture data offers an alternative for effectively 

creating new animations [Treuille et al. 2007]. Essentially, 

interpolating and concatenating dynamic clips into a realistic 

script. In his thesis, Karthikeyan [2008] offers an animation 

framework that uses the GPU to render crowds of virtual humans, 

in real time. The technique utilizes motion graphs [Kovar et al. 

2002] for splicing an existing database of short animation 

sequences, and produces a continuous and a much longer clip for 

rendering. This implementation uses CUDA [Nvidia 2007] and 



runs the GPU as a general compute device. It demonstrates a 

significant animation speedup compared to an equivalent CPU 

implementation. However, this approach is less scalable and 

suffers from an increased space complexity of the motion graphs 

that must be stored in video memory for its entirety. 

Our work was directly inspired and builds on top of RVO. RVO 

produces smooth, visually compelling motion in setups formed by 

crowds with hundreds and thousands of agents. But foremost, 

each agent navigates individually without explicit communication 

amongst agents, and all pursue identical, free collision reasoning.  

RVO is thereby an embarrassingly parallel workload proving 

performance scale on the CPU, nearly linear with the number of 

agents. Extremely attractive is its intuitive formulation of 

integrating global path planning and local navigation, leading to a 

compact and economic memory model. At the same time, RVO is 

notably computationally intensive, but this is well aligned with a 

teraflop power, capable GPU. 

3    Multi Agent Navigation 

The overarching force driving navigation planning is that agents 

have a destination or a goal. We consider goal selection an 

external parameter set by the game developer. Barring 

environmental conditions, we assume agents move to their goal in 

the fastest speed possible. Most importantly, the presence of other 

moving agents affect speed and in the extreme case a pair of 

agents cannot intersect each other. In general, agents choose the 

minimal distance path to their destination, but even when they 

move unobstructed they abide by a preferred global path they 

constantly consult. Presently, we compute the global path on the 

CPU in a onetime, preprocessing step. This involves the reduced 

visibility graph [LaValle 2006] method to obtain a shortest path 

roadmap that prohibits agents from contacting static obstacles. 

Then, our navigation model, composed of agents, obstacles and a 

roadmap, is discretized in time and simulation advances all agents 

per timestep, concurrently. Noteworthy in our framework is a 

dynamic obstacle entity that is treated as a specially tagged agent, 

passively moving in a constant, unaltered velocity.  

3.1    Visibility 

We can only offer here a short summary of roadmap related tasks, 

namely visibility and shortest path. We define a visible point with 

respect to a vantage point, an observer, if the line that connects 

the points does not intersect any of the static obstacles present in 

the scene. To simplify computation and without loss of generality, 

input polygonal obstacles are each further reduced to a set of 

boundary line segments. Then, the visibility processing step 

generates two sets of edges, E0 that connects pairs of visible 

roadmap nodes and E1 linking the goal position of each agent to 

unblocked roadmap nodes. For resolving roadmap connectivity 

we favored an efficient implementation of the sweep plane 

algorithm [Shamos and Hoey 1976]. This amounts to finding the 

set of intersections of a moving vertical line, originating in either 

a roadmap node or in an agent goal, with line segment obstacles. 

Let � be the number of obstacle segments, the running time 

complexity of the algorithm is �(�log�) and space limit is of 

�(�). We conclude the simulation setup step by invoking the 

Dijkstra [Russel and Norvig 1995] search algorithm to determine 

the shortest path from an agent goal position to any of the 

roadmap nodes. Both the visibility and shortest path computations 

described ideally suit a SIMT engine. In fact, recent work for 

running roadmap search algorithms on the GPU [Bleiweiss 2008] 

confirms noticeable performance gains and we expect appreciable 

scale in porting visibility processing on to the hardware. The 

fairly large visibility data structures produced here require though 

a specialized video memory layout for compelling multi thread 

access, further discussed in section 4.  

3.2    Mathematical Model 

We will now briefly address the mathematical model for collision 

avoidance dynamics. The VO governing equation follows: 

��	

(�	) = 
 �
 | �(�
, �
 −  �	) ∩ � ⨁ − � ≠ ∅ }. 

Let A be an agent with reference point �
 and B a disc shaped 

obstacle centered in �	. Let ⨁ denote a Minkowski sum and � a 
ray defined by an origin and a direction. ��	


(�	) (Figure 1(a)) is 

the VO of obstacle B to agent A defining a set of velocities �
 for 

A that result in collision with obstacle B moving in velocity �	, at 

some later point in time. The Minkowski difference of a line 

segment shaped obstacle B 
 ��, �� }, used in our model, and a 

disc A is an extended parallelogram shown in Figure 1(b). 
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Figure 1: Velocity Obstacle ��	

(�	) of disc shaped, obstacle B 

to disc shaped, agent A (a); Minkowski difference of line shaped, 

obstacle B 
 ��, �� }, and disc shaped, agent A (b). 

RVO extends VO to overcome potential oscillatory movement 

[Van Den Berg et al. 2008-ICRA]. Rather than choosing for each 

agent a velocity that is outside the other agent’s VO, the new 

velocity per timestep is an average of the agent current velocity 

and a velocity that lies outside the VO of the other agent.  The 

formalization of RVO is outlined in the following equation: 

���	
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��	, �
� is the RVO of agent B to agent A and is defined as 

a set consisting of all velocities �
 for agent A that will result in a 

collision with agent B at future point in time, assuming that agent 

B chooses a velocity �	 in its own specified RVO. RVO 

geometrical interpretation is the translation of the collision cone 

��	

(�	) to the apex  
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)
 , as illustrated in Figure 2. RVO is 

further generalized and adds an inter agent, collision reasoning 

load factor *	

, in the range of 0 to 1, that expresses the agent rule 

of reciprocity: *	

 = 1 − *


	. The form of geometrical translation 

now places the VO cone apex in (1 − *	 
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a multi agent setup the combined RVO for agent �,  is the union of  
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Figure 2: Reciprocal Velocity Obstacle ���	

(�	, �
) of agent B 

to agent A, translating the collision cone  ��	

(�	)  to the apex   

�&' �(

)
.  

all RVOs created by other agents and the VOs generated by all the 

obstacles in the scene: 

���, =  ⋃,,/ ���/
,��/ , �, , */

,� ∪  ⋃1 ∈ 2 ��1
, (�1). 

The problem of multi agent simulation can be now formulated and 

reduced to searching an optimal agent velocity in a set of 

permissible velocities outside the claimed union of RVOs, for 

each time interval.  

3.3    Simulation 

In this section we formalize the steps for simulating our model.  A 

simulation session runs until all agents reach their goal or until a 

maximum limit of running time exceeds a preset system cap. Our 

simulator advances through each timestep performing parallel 

computation on all agents in a three stage pipeline, hash (optional, 

discussed later), simulate and update, as depicted in Figure 3: 

 

 

 

 

 

 

 

 

 

 

Figure 3: Pseudo code for simulator advancement through each 

timestep with hash (optional), simulate and update phases. 

In the first step of the simulate phase we compute a preferred 

velocity vector. Its magnitude is bound to a preferred speed value 

set externally, and its direction faces from the current agent 

position to either a roadmap node or to the agent goal. The closest 

roadmap node is any of the visible nodes from another roadmap 

node or from the agent goal, or a node of the shortest path tree, 

computed as part of the visibility preprocess described in a 

previous section. Ideally, we would want the new velocity 

selected for the agent to be as close to the preferred velocity.  

In the next step we compute the agent proximity scope. We assert 

that simulating the model described in the previous section for 

every possible pair of agents and any combination of agent and 

obstacle is unnecessary and would require excessive amount of 

computation. The basis for our claim is that an agent has less 

knowledge of a far away agent intention and it is thus less likely 

for them to affect the motion of each other. We thereby adaptively 

compute a limited scope of neighboring agents and obstacles, 

confined to a certain distance from the agent of concern. The 

agent proximity scope is further bound by a programmer set 

maximum number of the closest, and most likely visible 

neighbors.  

We then select the best new velocity for the agent from the set of 

velocities outside the combined RVO. In our model agents are 

subject to dynamic constraints that include maximum speed 

3,
456 and maximum acceleration 7,

456. The new velocity search 

is additionally qualified then to be in the following admissible set:  

��,(�,) = 
 �#
, | ||�#

,|| <  3,
456 ⋀ ||�#

, −  �,|| <  7,
456∆; }, 

where ∆;  is the timestep. We arrive at the best new velocity by 

evaluating number of random samples evenly distributed over the 

set of allowable velocities. Where the number of velocity samples 

is a global simulation parameter set externally. The quality of a 

candidate velocity is affected by its deviation from the preferred 

velocity and by the inverse of the time-to-collision with the agent 

neighbor. This is further expressed in the following cost function: 

<=>;,(�#
,) = ||�,

?@AB − �′,|| + D
, E
F,4AGFHGIHJJ,K,HL(�M)

 , 

where �,
?@AB

is the preferred velocity and D, is a weighting factor 

that controls the agent aggression. Note the time-to-collision for 

no foreseen collision is infinity. For each candidate velocity we 

look for the minimum time-to-collision in the combined RVO, 

generated for the agent neighboring scope, and select the new 

velocity to be the candidate velocity with the minimal cost: 

�,
LAN = OP� <=>;,(�′,) DℎR-R �′,  ∈ ��, . 

The algorithm described addresses crowded scenes with their 

combined RVO space likely filling up the entire set of admissible 

velocities. While picking up velocities inside the union of RVOs 

is an incidental liability, it was empirically proven to be resolved 

in progressive updates. Also, in theory, the navigation model 

ensures that no pair of agents will intersect. However, in practice 

we enforce a pair-wise minimum distance that we flag once being 

violated. Then, in selecting the new velocity we rather compute 

the time-from-collision and make agents too close part away.  

The update phase is computationally light weight and is invoked 

synchronously once the new velocity has been resolved for all the 

engaging agents. We first scale the velocity of the agent to obey 

maximum acceleration and follow with an update to the agent 

position. We then resolve the at-goal agent state by checking the 

distance between the updated position and the goal to be within an 

  1:    VO = velocity obstacle 

  2:    RVO = reciprocal velocity obstacle 

  3:    do 

  4:        hash  

  5:            construct hash table 

  6:        simulate  

  7:             compute preferred velocity  

  8:             compute proximity scope 

  9:             foreach velocity sample do    ← �R>;RT U7-7VVRV 
10:                   foreach neighbor do 

11:                       if OBSTACLE then VO 

12:                       elseif AGENT then RVO 

13:                   resolve new velocity 

14:        update 

15:            update position, velocity 

16:            resolve at-goal  

17:    while not all-at-goal                          ← WV7; U7-7VVRV 

� 

� 
��	


(�	) 

�	 

���	

(�	 , �
)  

�
 

�
′ 

(−�
) 

�
 +  �	

2
 

(�

# ) 



externally set, goal radius parameter. Finally, once all agents have 

reached their goal, simulation terminates.  

4    Implementation 

Multi agent simulation on the GPU presents several 

implementation challenges. Most importantly  are (7) hiding 

global memory latency [Buck et al. 2003], (X) mitigating thread 

divergence, (<) minimizing hash table  constructing cost and (T) 

efficient thread safe, random number generation (RNG).  Our 

simulator operates on all agents simultaneously and is governed 

by a pair of simulate and update CUDA kernels. Optionally, we 

fork off nested, velocity sample iteration by launching a set of 

independent thread grids, one per agent (Figure 3).   

The communication paths of our CUDA simulator are straight 

forward. In each simulation step the GPU provides back to the 

CPU main simulator thread a list denoting at-goal status, per 

agent. The list cumulative state thus makes up for our session 

termination criteria. In addition, the GPU emits two arrays, one of 

positions destined for visualizing the agent computed waypoints; 

and one of velocities for interacting with the physics simulator of 

a game engine. Further, deeper discussions of AI, physics 

simulation integration is outside the scope of this paper. We now 

look more closely at some GPU unique, simulator design 

considerations to confront our challenges. 

4.1    Data Layout 

We have all our simulator data structures reside in global 

memory. Static per timestep and any modifiable data structures 

are kept in non cached, read-only or read-write global memory 

locations. Although it would be intuitive to store visibility and 

shortest path data as an array-of-structures (AoS) this has serious 

memory access implications with severely reduced bandwidth due 

to thread unaligned, data layout. Instead, we store roadmap related 

data in a more efficient collection of structure-of-arrays (SoA). By 

grouping thread related data in contiguous arrays we improve 

substantially the possibility of coalesced memory transactions 

across a half-warp.  

We maintain two identical visibility data structures, one for 

roadmap nodes and one for agent goals. Per node or goal vertex, 

visibility data is split into a pair of vectors, one listing 

unobstructed, angular vertex view of static obstacles in the form 

of 
 7�YVR, >RYOR�;_PT } and the other is a collection of 

distances from the vertex to a roadmap node 


 TP>;7�<R, �=TR_PT }. The elements of the vectors are of type 


 WV=7;, P�; }, each taking 8 bytes in global memory.  The vectors 

are further aggregated into a collection of vectors as depicted in 

Figure 4. Vectors inside a collection are of arbitrary length and 

are indexed or iterated using a pair of linear offset and count 

parameters. Then, in video memory the visibility hierarchy is 

represented as a pair of collection of vectors and a top level array 

listing 
 =WW>R;, <=[�; } for specific vector dereferencing, for 

each the roadmap nodes and the agent goals.  

A third array enlists agent goal shortest path trees, each formatted 

as a vector of distances from a roadmap node to an agent 

goal
 TP>;7�<R, �=TR_PT }. The shortest path data structure 

follows identical visibility data access pattern illustrated in Figure 

4. 

Read-only resources throughout the simulation session are stored 

as a set of linear device memory regions bound to texture 

references. They include global simulation controls (Figure 5) and 

static obstacles, each represented as a line segment occupying a 

pair of four component texels, one for each vertex. With the 

benefit of being cached, texture potentially displays higher 

bandwidth for localized access.  

 

 

 

 

 

 

 

       

 

 

Figure 4: Visibility and shortest path data hierarchy. The index 

array (a) is thread aligned and uses a pair of 
 =WW>R;, <=[�; } to 

locate a vector of a roadmap node or a goal vertex in the array of 

vectors (b), vector elements are of type 
 WV=7;, P�; } (c). 

 

 

 

 

Figure 5: CUDA global simulation controls data structure, stored 

in a single texel texture. 

The CUDA agent data structure shown in Figure 6 is the focal 

resource for communicating simulation results across kernels. It 

groups float4 vector members and internal data structures, each 

composed of 4 byte, scalar variables of no more than 16 bytes, 

padded as necessary. This yields a top level, 16 byte aligned data 

structure in memory that is highly effective for performing vector 

member accesses. In our simulator model vector data types were 

made extensible and more forward looking.  They are each of 

three or four, 32 bit float or integer components, for computation 

and storage, respectively.  

 

 

 

 

 

 

 

Figure 6: CUDA agent data structure aligned to 16 bytes in global 

memory; internal data structures are padded to a 16 bytes entity, 

their members are annotated in green (takes a total of 192 bytes). 

Our agent proximity data structure is kept in a separate SoA of 


 �RPYℎX=-_PT, �RPYℎX=-_;\UR } elements, with neighbor type 

being either an agent or an obstacle. With no dynamic allocation 

on the GPU we claim enough space to accommodate the 

maximum neighbor count specified in the governing simulation 

parameters, per agent. An agent resorts to its 
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 WV=7;, P�; } 


 =WW>R;, <=[�; } 

(a) 

(c) 

(b)  

struct CUSimulation { 

    float timestep; 

    struct  proximity; 
 O7^�RPYℎX=->, TP>;7�<R   } 
    float velocitysamples; 

}; 

struct CUAgent { 

    float4 start, goal; 

    struct  shape; 
 -7TP[>, Y=7V-7TP[> } 
    float4 position, velocity; 

    float4 prefvelocity, potential, candidate; 

    struct constraint; 
 UR-W>URRT, O7^>URRT, O7^7<<RVR-7;P=�, >7WR;\ } 
    struct cost; 
 ;POR;=<=VVP>P=�, OP�UR�7V;\, -7�YR } 

    struct proximity; 
 =WW>R;, <=[�; } 

    struct state; 
 <=VVPTRT, 7;Y=7V, =-PR�;7;P=�, -7�T>RRT }  
}; 



private 
 =WW>R;, <=[�; }, array index state to dereference its own 

proximity list.  

With this data layout, making 8 and 16 bytes our dominant access 

grain, we appear better positioned to mitigate bandwidth drop of 

non coalesced transfers. Also, we are less concerned with onetime 

pointer indirection cost attributed in fetching the index of a thread 

aligned, array list member; this is well amortized across multiple 

list element loads or stores.  

4.2    Nearest Neighbors Search 

One of the key simulator computation steps in arriving at the 

agent proximity scope is performing _-nearest neighbors search. 

We found the naïve approach, with each agent iterating over all 

other agents and computing all possible distances, to pose a 

quadratic effect on system level running time, resulting in a 

considerable performance drop on the GPU. Running the 

exhaustive type search in parallel [Garcia et al. 2008] has merit 

for higher space dimensionality (>16) and was not an ideal option 

for us.  We therefore leaned towards a spatial hashing scheme that 

is not necessarily perfect [Lefebvre and Hoppe 2006], but is 

deterministic in evaluating an upper and lower bound of a query. 

The hash table assumes as close as linear storage �(�) 

complexity and performs �(log�) query time [Overmars 1992], 

with � the number of agents in the environment. The hash table is 

recomputed every timestep and therefore must be constructed 

with a predictable algorithm that takes a relatively small fraction 

of overall simulation frame time.  

The hash function ℎ(U) maps a 3D position U(^, \, `) onto a 1D 

index for dereferencing the array of agent data structures, 

discussed earlier. Our mapping simply examines the signed 

distance of the query position to a reference agent position: 

det (UdeA@f, U@AB). Assuming non overlapping agents, an agent 

position is guaranteed to be unique per frame; however, few hash 

collisions are unavoidable due to perfect symmetry of agents to a 

reference agent. Our hash table is built as a balanced, binary tree, 

representing the static state of agents at the start of a simulation 

step. And, with a logarithmic query traversal, the prospect for 

coalesced memory loads is thereby raised. We reload the 

computed hash table in global memory each frame, and store it as 

an array of tree nodes, each aligned to a 16 byte boundary. A node 

data structure is composed of a three dimensional, float data type 

key, an integer scalar index value, and two nodal device pointers – 

left and right.  

The algorithm for querying the closest agent neighbors takes then 

the following steps: 

For each agent: 

• Select random, 3D position samples in the agent radial 

neighbor area, defined in the global simulation 

parameters.  

For each sample: 

• Hash 3D position to get the closest agent index. 

• Compute distance between the agent and its closest. 

• Insert and sort distance into the agent proximity list. 

The number of hash queries we perform per step, for each agent, 

is externally controlled by the global, nearest neighbors count 

quantity. Obviously, the neighbor sampling quality directly affects 

the smoothness of the simulation. In a dense environment we 

would want to pick a higher sample count to avoid missing close 

neighbors and as a result agents grazing each other. In practice, a 

few tens of samples are adequate. The performance benefit of the 

hashing scheme on the GPU is nonetheless fairly conclusive, once 

the agent count exceeds a threshold (>500), and further discussed 

in section 5.  

4.3    Execution Model 

Launch Overhead.  CUDA kernel launch overhead is of prime 

concern to us. Specifically, we seek minimizing per frame cost 

incurred by host-to-device and device-to-host copies. The 

recursive nature of simulation mandates resources to be persistent 

across kernel launches, both intra and inter frames. While most of 

our working set is allocated and copied from host-to-device once 

for the entire simulation session in an insignificant percentage of 

total running time, the hash table remains a concern. Ultimately, 

we wanted to run hash table construction on the GPU and avoid 

unnecessary frame copy. However, launching a single threaded, 

high latency dedicated kernel incurs an appreciable performance 

drop and our present implementation resorts to building the table 

on the CPU followed by a host-to-device frame copy. We address 

quantitative results on the matter later. 

Table 1: Kernel resources; shared, local and constant memory 

usage in bytes, mostly compiler implicitly generated for kernel 

launch arguments, synchronization barriers and register spilling. 

Property Kernel 

simulate update 

Threads Per Block 128 128 

Active Threads Per Multiprocessor 512 1024 

Active Warps Per Multiprocessor 16 32 

Occupancy  50% 100% 

 

Table 2: CUDA static occupancy measure for the simulator 

kernels, running on a 1.3 compute capable device.  

Configuration. Hardware threads are laid out in a single, one 

dimensional grid of one dimensional thread blocks. A thread is 

assigned an agent in flat mode, and an agent velocity sample in 

nested parallel. And, all GPU’s currently running threads must 

complete before any of the kernels is allowed to launch.  

Complexity. The simulate kernel performs the three stages of (7) 

computing a preferred velocity, (X) nearest neighbors search and 

(<) iterating the new velocity selection out of the combined RVO 

and VO avoidance set. In theory, the running time complexity of  

(7) is linear with neighboring roadmap nodes to any of a roadmap 

node or an agent goal, or with the length of the shortest path from 

the goal to a roadmap node. Given � the number of agents, _ the 

proximity sample count and 3 the number of candidate velocities, 

the algorithm of  (X) runs in either �(�)) without hashing or  

�(_log�) with hashing; and  (<) performs in �(3_). With the 

update program executing only a few tens of mostly unconditional 

device instructions, evidently either (X) or (<) are the de facto 

performance limiting code sections of our simulator, attracting 

most of the optimization attention.  

Hardware Resources. The GPU results we present in this paper 

are from running our simulator on NVIDIA’s GeForce GTX280 

Kernel Registers Shared Local Constant 

simulate 32 116 244 208 

update 14 60 0 56 



[Nvidia 2008]. Table 1 illustrates hardware resource usage for our 

kernels. Shared memory usage is primarily static and assigned for 

launch argument passing and synchronization barriers. Notably 

high is the simulate kernel register count, 32, imposing a 0.5 

thread block efficiency, occupancy, cap as shown in Table 2. 

Thread local memory area is indeed required for register spilling. 

Latency. GTX280 is considered a CUDA 1.3 compute capable 

device with a total of 16384 registers per multiprocessor. Ideally, 

we would opt for the upper register bound in assigning warps to a 

thread block. However, our experiments pointed to an appreciable 

performance sweet spot in allocating four warps per block, 

leading to the scheduling of up to four active thread blocks per 

multiprocessor.  With up to 16 active warps per multiprocessor we 

are able to hide well the latency of a typical fused multiply-add 

(FMA) instruction (10–12 cycles). Consequently, by effectively 

processing independent math instructions we are properly 

positioned to amortize several hundred cycles of global memory 

access latency.  

Coalescing. Providing to CUDA 16 bytes aligned SoA with a 

small footprint array element, ensures at most two memory load 

or store instructions per thread access, leading to a worst case 

bandwidth of a quarter of the fully coalesced half-warp. In 

addition, we were able to relegate fine grain coalescing to an 

impressively improved compute capable device 1.2 or higher.  

With transaction addresses binned into � contiguous segments in 

memory there could be any number of memory transfers from one 

to � (up to 16) for the half-warp. Whereas lower compute capable 

devices are limited to issue either one or sixteen memory 

transactions.  Exceptionally, the new graceful coalescing protocol 

effectively mitigates poor locality of reference across threads 

often found in the highly irregular and nested simulate kernel.  

4.4    Nested Parallel 

With the GPU capable of running simultaneously many thousands 

of threads in flight, straight forward agent based, flat data parallel 

often times renders the hardware sub optimally. In fact, simulation 

scenarios of up to a hundred of agents map on to a single 

multiprocessor, leaving majority of the thirty available 

multiprocessors on GTX280 idling.  To our knowledge, no work 

has considered so far velocity level, nested parallel to accomplish 

improved performance scale for relatively small agent count. 

 

 

 

 

 

Figure 6: CUDA nested kernel top level code.  

 

 

Figure 7: Top level, nested candidate velocity, CUDA kernel; 

performed at its tail, a fine reduce-min into shared memory 

followed by a coarse global atomic compare-and-swap operation. 

The formulation of nested parallel in our simulator forks off a 

child grid for each agent with its thread count configured by the 

externally set, number of samples to iterate for resolving the new 

agent velocity. Nested thread grids run independently given 

sufficient hardware resources, and they all execute the same 

candidate velocity, CUDA kernel. Each child grid synchronizes 

its own threads by performing at the tail of the kernel a fine 

reduce-min operation into shared memory followed by an inter 

thread block, global atomic compare-and-swap operation, shown 

in Figure 7. Of course, in nested mode the original simulate kernel 

resorts to a lesser compute load. Note that velocity grids inherit 

resources from the single agent grid, and more importantly the 

memory footprint remains invariable to flat or nested parallel 

mode, apart from additional 512 bytes of shared memory.  

 

 

 

 

 

Figure 8: Thread grid distribution in nested simulator pipeline. 

The formation of the nested simulator pipeline (Figure 8) 

introduces thread amplification mid pipe. And, with hundreds of 

velocity samples to iterate, we can easily populate thousands of 

threads in the GPU for even a handful of participating agents; thus 

leveraging the hardware compute power much more effectively.  

4.5    Thread Safe RNG 

Our pseudo random number generator implements the rand() 

function of the C runtime library. We realized the generator has to 

be thread safe and considered to store a seed per multiprocessor in 

shared memory. This implied a global memory save and a restore 

per timestep, for persistency. But, updating the seed for every 

rand() call required an atomic MAD operation into shared 

memory that turned out to be adversely in appreciably affecting 

performance. Subsequently, we ended up with a random seed 

member in the CUDA agent data structure (Figure 6), resulting in 

an independent random number generator per agent with a more 

qualitative, well distributed and less predictable number sequence. 

5    Results 

We next report simulation-only results, all obtained in running on 

Microsoft 32 bit, Vista and using CUDA 2.1.  

5.1    Experiments 

Our list of experiments (Table 3) straddles a range of agent count 

from a handful up to tens of thousands. Simple is a simulation of 

four agents moving towards a goal diagonally across each other, 

and bypassing an obstacle in the middle. Second and third 

respectively, simulate averting collision with a moving obstacle, 

and robots maneuvering in an area filled with static polygonal 

obstacles. Next, thirty two agents positioned on a circle move to 

their diametrically opposite position while yielding the right of 

way. Then, we simulated four groups of twenty five agents each, 

forced to pass through a narrow corridor. The Stadium scenario 

  1:    __global__ void 

  2:    candidate(CUAgent* agents, 

  3:                      int index, 

  4:                      CUNeighbor* neighbors)  

  5:    {  

  6:        float3 v, float t; 

  7:        CUAgent a = agents[index]; 

  8: 

  9:        if(!getThreadId()) v = a.prefvelocity; 

10:        else v = velocitySample(a); 

11:        t = neighbor(a, agents, neighbors, v); 

12: 

13:        float p = penalty(a, v, t); 

14:        reduceMinAtomicCAS(a, p); 

15:        if(p == a.minpenalty)  a.candidate = v; 

16:    }  

simulate 

 7YR�;] 

 7YR�;LGE  

 7YR�;E update 

candidate 

� grids, each of 

3 velocity threads 



simulates two hundred and forty five agents entering the field 

through four gates and then spreading towards forming a textual 

pattern. Whereas the Crosswalk dataset experiments with four 

groups of one hundred agents each that establish straight lanes to 

avoid collisions as they cross each other on a walkway (Figure 

14). Finally, we simulated an office floor evacuation with agents 

escaping the building through two narrow exits (Figure 15). This 

sequence highlights interesting congestion phenomena that occur 

with groups travel at different speeds. Leaving the roadmap fixed, 

the Evacuation setup has multiple representations with ascending 

number of agents, from five hundreds to twenty thousands. 

Indeed, for datasets without an explicit definition of a roadmap, 

agents head on towards their goal from every location reached. 

Table 4 illustrates governing settings that affect system level, 

simulation runtime complexity. 

Dataset Agents Segments Roadmap 

Nodes 

Flat 

Thread 

Blocks 

Simple 4 4 4 1 

Car 12 0 0 1 

Robots 24 130 16 1 

Circle 32 0 0 1 

Narrow 100 16 0 1 

Stadium 245 24 16 2 

Crosswalk 400 8 0 4 

Evacuation 500 212 429 4 

1000 8 

5000 40 

10000 79 

20000 157 

Table 3: Simulation experiments with a quantitative breakdown of 

simulation objects and flat thread block distribution. 

Dataset Timestep  Proximity   Velocity 

Samples 

Frames 

� T 

Simple 0.25 10 

 

15 250 607 

Car 0.125 100 500 228 

Robots 0.1 3 400 455 

Circle 0.125 2 500 596 

Narrow 0.125 2 500 780 

Stadium 0.125 3 500 1116 

Crosswalk 0.0625 10 1000 1200 

Evacuation† 0.1 10 15 250 1200 

    †applies to all Evacuation dataset derivatives 

Table 4: Governing simulation parameters: timestep in seconds, 

proximity neighbor count � and radial distance T, candidate 

velocity samples, and number of actual frames per session. 

Property GTX280 X7350† 

Core Clock (MHz) 601 2930 

Memory Clock (MHz) 1107 1066 

Global Memory (MBytes) 1024 8192 

Multiprocessor 30 4 

Total Threads 4–20000 16 

   †Intel’s X7350 used in the work by Van Den Berg et al. [2008-I3D] 

Table 5: Processor configuration properties for GPU and CPU 

reported in our results; multiprocessor notation is the equivalent 

of cores for the CPU.  

Table 5 provides configuration properties for the processor types 

reported in our results (section 5.2). CPU running time on Intel’s 

Xeon X7350 [Intel 2008], for the different evacuation scenarios, 

are published in the work by Van Den Berg et al. [2008-I3D]. 

5.2    Statistics 

In running the simulations described we were mainly interested in 

collecting statistic data related to the model memory footprint, 

parallelism efficiency as simulation progresses, and comparative 

running time and speedup figures. Figure 9 shows GPU global 

memory area of simulation resources. Data structures are broken 

down by association to agents, goals, and the hash table. Roadmap 

nodes and edges, and at-goal, position and velocity output arrays 

are rather a small constant and excluded from the chart. 

Figure 9: GPU global memory footprint (MBytes) of SoA and 

AoS entities collectively assembled under agents, goals and hash 

table subgroups. 

The plot in Figure 10 depicts percentage of agents reaching their 

goal position as a function of simulator advancement in time. A 

steep agent completion curve towards the end of the simulation 

implies a more consistent thread block load balance and is seen in 

the Simple, Circle and Narrow experiments. However, agent 

progress in the Stadium and the Evacuation plans is more graceful 

in time and consequently expose thread task unevenness; a block 

mixing mostly idling with compute intensive threads for at-goal 

agents and ones still actively pursuing their goal, respectively.  

 

Figure 10: Simulation progress plot for some of our experiments; 

depicting fraction of agents reaching their goal as a function of 

frame advancement. 



 

Figure 11: Running time (milliseconds per frame) for simulations 

with small number of agents (≤32). Comparing the GPU in flat vs. 

nested parallel modes; thread count shown for nested simulation. 

 

Figure 12: Running time (milliseconds per frame) for simulations 

with over five hundred agents (Evacuation). Comparing the GPU 

with and without nearest neighbors hashing. 

 

Figure 13: Frame rate (frames per second) and speedup for 

simulations with over five hundred agents. Comparing GPU with 

nearest neighbors hashing vs. sixteen threaded CPU. 

Figure 11 shows performance of flat vs. nested parallel modes for 

experiments of small number of agents (≤32). Whereas for 

simulations with over five hundred agents, Figure 12 summarizes 

running time for NVIDIA’s GTX280 configured with and without 

hash optimization. And, Figure 13 provides both simulation frame 

rates and speedup factors of the GPU with nearest neighbors 

hashing vs. a sixteen threaded RVOLib [RVOLib 2008] 

invocation on Intel’s X7350 CPU. All running times reported on 

the GPU include both onetime and per frame memcpy from host-

to-device and device-to-host, and hash table build time when 

applicable. 

6    Discussion 

The statistic data presented in the previous section set forth 

context to the discussion. 

Memory Footprint.  The compact working set of our simulator is 

a striking difference compared to the more resource demanding, 

continuum perspective frameworks, reviewed in section 2. 

Furthermore, our video memory footprint is fully deterministic, 

growing almost linearly with the number of agents. Consequently, 

we allocate resource space once for the entire simulation session, 

provided our claimed area fits available GPU global memory, 

before we launch the simulator. Note that with a narrower global 

memory stride we are less likely to hit a significant penalty of 

almost doubling memory access latency (from 400 to 750 cycles) 

for missing address translation table entries.   

Nested Parallel. For small number of agents (≤32), flat level 

concurrency on the GPU has a diminishing return against the 

CPU.  It is the inner, velocity level parallel that truly brings out 

the GPU compute power to its fullest, with a realized average of 

3.5X acceleration for nested vs. flat parallel modes (Figure 11). 

Evidently, programming CUDA for nested parallel in our model 

is remarkably intuitive, but appeared much harder on the CPU 

given the language tools presently available. 

Performance.   The hash optimization of section 4.2 improved 

our simulation performance on the GPU by a factor of up to 4X, 

compared to the naïve, exhaustive approach (Figure 12).  This 

ultimately affecting the GTX280 to scale almost linearly with 

increased agent count of up to several tens of thousands. 

Moreover, we have achieved interactive rate of eighteen frames 

per second in simulating the Evacuation setup with ten thousand 

agents (Figure 13). In contrasting our system with a sixteen thread 

invocation on a 3GHz, quad-core CPU, we have observed a GPU 

speedup of up to 4.8X. Note that RVOLib would appear 

benefitting little if at all in optimizing _-nearest neighbors search 

[Van Den Berg et al. 2008-I3D]. 

Persistent Threading.  The reality for memory resources to be 

persistent has ruled out an extensive use of the GPU shared 

memory in our design. Nonetheless, managing shared memory as 

a global memory cache remains a credible optimization option to 

further reduce overall latency. Specifically, caching frequently 

accessed agent structure members per thread, could have aided us 

the most. However, in sustaining four active thread blocks per 

multiprocessor, for effectively hiding arithmetic operation 

latency, we are being left with 4 KBytes of shared memory to 

spare. And, with 128 threads per block, there remain 32 bytes 

total for agent caching. Restrictive as it stands, we still look 

forward to experiment with a software controlled cache, expecting 

next generation hardware to continue relax shared memory space.  

Limitations.  One constraint in our present design is the single 

threaded construction of the hash table. Invoking a dedicated GPU 

kernel for this task would appear the cleaner solution. However, 

running it single threaded, unable to properly hide global memory 

latency, is highly incommensurate with observed overhead in the 



order of a hash-less, frame time. Whereas, a cache friendly, hash 

table build on the CPU, combined with the copy to global 

memory, takes a much lesser toll of 28 percent of update time, for 

scenarios with tens of thousands agents.  Running effectively a 

single thread, memory bound task on the GPU still remains an 

implementation challenge. 

Hash based nearest neighbors search might impact simulation 

smoothness and cause agent grazing, once the proximity area is 

under sampled.  Unfortunately, there is no automatic way for 

picking the ‘right’ samples. However, conscious oversampling, 

when the hash function returns a recurred index, mitigates 

perceived motion artifacts and yet sustains the tremendous 

performance advantage of hashing. 

Lastly, thread amplification in nested parallel can overrun rather 

quickly both the maximum grid count and in flight threads (15360 

on GTX280) the hardware is capable of. We approach this 

constraint by adaptively selecting flat vs. nested modes based on 

both the agent and the velocity sample counts. 

7    Summary and Future Work 

We have extended RVO to perform efficiently on current 

generation of GPU architectures. Compared to the naïve nearest 

neighbors search, we found spatial hashing on the GPU to be 

extremely beneficial, yielding up to quadrupled performance, and 

leading to almost linear scale of running time with increased 

number of agents. We addressed severely idling GPU concerns 

for small agent count by exploiting nested parallel, showing a 

considerable 3.5X average gain vs. flat mode. On the other hand, 

we found the GPU notably superior for higher agent count with 

observed speedup of up to 4.8X compared to a sixteen thread 

invocation on a powerful, quad-core CPU. Finally, with the 

advantage of our compact memory footprint we believe the time 

is appropriate for developers to evaluate, and possibly integrate, 

GPU based multi agent navigation in game engines.  

Areas considered for future work include: 

• Develop a consistent simulation framework on the GPU for 

AI and physics. Per frame interaction involves physics to own 

the game character position and AI controls its velocity. 

• Exploit GPU shared memory as a managed global memory 

cache to make single threaded, hash table build run 

effectively.  

• Dynamically regroup agents per frame, specifically extracting 

the ones that reached their goal, to improve thread block load 

balance.  

• Explore split frame simulations on multi GPU configurations; 

advocate GPU level shared memory to avoid working set 

replication and expensive inter-GPU copy.  

• Improve hash based, nearest neighbors sampling quality by 

defining finer angular samples and ensuring more consistent 

area coverage. 
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Figure 14: Crosswalk simulation: four groups of one hundred agents each form straight lanes as they cross each other on a walkway. 

    

Figure 15: Evacuation simulation: five hundred agents evacuating an office floor, escaping through two narrow exits; the scenario 

highlights congestion phenomenon as agents leave the building. 


